A soft computing approach for benign and malicious web robot detection

نویسندگان

  • Mahdieh Zabihimayvan
  • Reza Sadeghi
  • H. Nathan Rude
  • Derek Doran
چکیده

The accurate detection of web robot sessions from a web server log is essential to take accurate trafficlevel measurements and to protect the performance and privacy of information on a Web server. Moreover, the irrecoverable risks of visits from malicious robots that intentionally try to evade web server intrusion detection systems, covering-up their visits with fabricated fields in their http request packets, cannot be ignored. To separate both types of robots from humans in practice, analysts turn to heuristic methods or state-of-the-art soft computing approaches that have only been tuned to the specification of a kind of web server. Noting that the landscape of web robot agents is ever changing, and that behavioral patterns and characteristics vary across different web servers, both options are lacking. To overcome this challenge, this paper presents SMART, a soft computing system that simultaneously detects benign and malicious types of robot agents from web server logs and can automatically adapt to the session characteristics of a web server. The results of experiments over some access log file servers, each servicing different domains of the web, demonstrate outperformance of the proposed method on state-of-the-art ones for benign and malicious robot detection. © 2017 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

Evolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol

The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2017